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ON THE GELFOND TWO CONJECTURES

HYUN SEOK LEE

ABSTRACT. In this paper, we introduce the two conjectures was proposed by A.
O. Gelfond. This two conjectures are very important open problems in the area.
I will prove these conjectures under assumption weak Schanuel’s conjecture.

1. INTRODUCTION

In [1], references to the existence of transcendental numbers go back many
centuries. The “transcendental” comes from Leibniz in his 1682 paper where he
proved sinx is not an algebraic function of x. Certainly Leibniz believed that, be-
sides rational and irrational numbers (by “irrational” he meant algebraic irrational
numbers in modern terminology), there also exist transcendental numbers. In [2],
Liouville proved a fundamental theorem concerning approximations of algebraic
numbers by rational numbers in 1853. This theorem gives first example of tran-
scendental numbers.

Theorem 1.1 (J. Liouville, 1853). If o is algebraic of degree d, then there is a
positive constant C(Q), i.e. depending only on o, such that for all rationals g,
C(o
o——> (d ) .
q q

From this theorem, we can find explicit examples of transcendental numbers.

4

Corollary 1.2. The number

is transcendental number.

In [3], there appeared Hermite’s epoch-making memoir entitled Sur la fonction
exponentielle in which he established the transcendence of e, the natural base of
logarithms. Liouville had shown in 1840, directly from the defining series, that in
fact neither e nor e? could be rational or quadratic irrational; but Hermite’s work
began a new era. In particular, within a decade, Lindemann succeeded in general-
izing Hermite’s method and, in a classical paper, he proved that 7 is transcendental
and solved thereby the ancient Greek problem concerning the quadrature of the cir-
cle. The work of Hermite and Lindemann was simplified by Weierstrass in 1885,
and further simplified by Hilbert, Hurwitz and Gordan in 1893. In [4], the tran-
scendence of e was first proved by Hermite in 1873 by using very different ideas
and applying the approximation of analytic functions by rational functions.

Theorem 1.3 (C. Hermite, 1873). The number e is transcendental number.

2010 Mathematics Subject Classification. 11J72; 11J81;
Key words and phrases. irrationality, transcendence, algebraic independence.



348 Hyun Seok Lee

Theorem 1.4 (F. Lindemann, 1882). The number T is transcendental number.

In [4], Lindemann stated more general results. One of them is Hermite-Lindemann
Theorem:

Theorem 1.5 (Hermite-Lindemann). If B is a non-zero complex number. Then at
least one of the two numbers  and B is transcendental.

Thus, if B is algebraic, then P is transcendental number. Let o, be non-zero
algebraic number, and if A is any non-zero determination of its logarithm, then A
is a transcendental number. Now, we define the set £ of logarithm of non-zero
algebraic numbers, that is the inverse image of the multiplicative group @X by the
exponential map :

L :exp_l(@x) = {7» eC:e e@x}.
The theorem of Hermite- Lindemann can be written Qn £ = {0}, thatis, A (#0) € £
is transcendental number.

Theorem 1.6 (Lindemann-Weierstrass, 1885). If Bi,..., B, are distinct algebraic
numbers, then e yeen ,eﬁ" are linearly independent over Q.

In 1900, at the International Congress of Mathematicians held in Paris, Hilbert
raised, as the seventh of his famous list of 23 problems, the question whether an
irrational logarithms of an algebraic number to an algebraic base is transcenden-
tal. The question is capable of various alternative formulations; thus one can ask
whether an irrational quotient of natural logarithms of algebraic number is tran-
scendental, or whether a.f is transcendental for any algebraic number o # 0, 1 and
any algebraic irrational 3.

Theorem 1.7 (Gelfond-Schneider, 1934). Suppose that o + 0,1 and that B is irra-
tional. Then o,p and o cannot all be algebraic.

In particular, 2V2 and " = (-1)7" are transcendental numbers. In the same
year, Gelfond published extended his results [5] of the Gelfond-Schneider Theorem
without proof.

Gelfond was the first to study algebraic independence of the values of the expo-
nential function at points that are not necessarily algebraic. In 1948, he conjectured
that if o, € Q, a #0,1, degP =d >2, then OLB,(XBZ, .. ,Och_1 are algebraically
independent. In general this conjecture is still open. We will discuss it later. Gel-
fond proved the conjecture for d = 3 in 1948. The following result is more general
than Gelfond’s.

Theorem 1.8 (R. Tijdemann, 1971). Let p,q be positive integers with % >2.

Let {ay,...,ap} and {b1,...,b,} be two sets of Q-linearly independent complex
numbers. Then the transcendence degree of

Q([ll, cee 7ap,ealb] PN 76”"17’1) > 2.
In 1949, Gelfond proved Theorem 5.1 for the case p = g = 3 with some conditions

on the numbers a;,b; for 1 <i<p, 1< j<g. Theorem 5.1 in the present general
form was proved by Tijdemann in 1971. We derive some of consequences

Theorem 1.9 (A. Gelfond, 1948). Let o, € Q with a. 0,1 and degP = 3. Then
ab, ob” are algebraically independent.
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Proof. Take p=q=3, a;j=B/"!, b; =B/ 'loga for j=1,2,3. Since degf =3, all
the numbers B7,aP’ for j > 1 are algebraic over Q(aP 7OLE’Z). Hence by Theorem
5.1, 0P and ob” are algebraically independent. O

Theorem 1.10 (Shmelev, 1968). Ler 0,0 € Q such that loga, and logay are
linearly independent over Q. Suppose B € Q with degP =2. Then at least two of

log o
L of of
g1

the numbers are algebraically independent.

Proof. We take p=4, g=2, Yy = }gigf, ai=1, ax=v, a3=P, as =By, b =
logoty, by =B logoy. Then we see that i for 1<i<4,1< J <2 are algebraic
over (@(y,(}ci3 ,ocg' ). Now the result follows from Theorem 1.8. O

2. GELFOND’S CONJECTURES IN CRAS 1934

In [5,6], A.O. Gelfond made an attempt in a one page note in the Comptes ren-
dus hebdomadires des séances de I’Acadmies des Scineces de Paris séance, du 23
Jjuillet 1934, Weekly Proceeding of the French Academy of Sciences in 23rd July
1934, just after he solved the 7th problem of Hilbert on the transcendence of ab.
Now, we translate the proceeding of the CRAS in 1934 written by Gelfond.

I have shown that the number ®”, where ® # 0,1 is algebraic number, r is an
irrational algebraic number, must be transcendental. By a generalization of the
method stated above theorem, I have shown that the following more general results.

Conjecture 2.1. Let P(x1,x2,...,%:,)1,---,Ym) be a polynomial with rational co-
efficients and 0,0y, ..., 0, B1,-..,Bm algebraic numbers, B; 0, 1.
The equality

P(e™,e*,... % logPy,logPs,...,logB,) =0

is impossible; the numbers 01,0, ..., 0y, as well as the numbers logB1,1og s, . . .,log B

are linearly independent over Q.

This theorem includes as special cases, the theorem of Hermite and Linde-
mann, the complete solutions of Hilbert’s problem, the transcendence of the num-
ber e®1¢™ (where ®; and ®; are algebraic numbers), the theorem on the relative
transcendence of the numbers e and 7.

Conjecture 2.2. The numbers

a»,«am
3

o
and o~

€N
® e(l)ze
Pl

where @) = 0,0;,...,0, et a1 0,1, 0 #0,1, a3 # 0, Q4,...,0, are algebraic
numbers, are transcendental numbers, and among numbers of this form there is n
non-trivial algebraic relations with rational integer coefficients.

Conjecture 2.3 (Schanuel’s Conjecture). If .,...,q, € C are linearly independent
over Q, then the set {Q,...,0,,e™,...,e*} contains at least n algebraically in-
dependent numbers, i.e.,

trdegQ@(och...,ocme“‘,...,e“") >n.
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When the case n = 1 Schanuel’s conjecture is true by Hermite-Lindemann Theo-

rem, which stats that e* is transcendental if o € @X. Now, we introduce the new
definition of the dependent of two sets for introduce the weak version conjecture
of Schanuel.

Definition 2.4. A set X c C is Q-dependent on a set Y c C if Q(X) c Q(Y)
Note that the fields
QB1,....Br) & Q(ocl,...,ocn,e“‘,...,e“”)
have the same algebraic closure. They also have the same transcendence degree.

Conjecture 2.5 (WSC) Weak Schnauel’s Conjecture). Given oy, ..., 0 € C are
linearly independent over Q, if the set {dy,...,0,,e* ... ,e*} is Q-dependent on
a subset {B1,...,Bn} then the numbers By, ...,B, are algebraically independent.

Now, if Schanuel’s conjecture is true, then we have
trdeggy Q(B1,- .-, Bn) = trdegQQ(ocl v O™ ,e“”) >n,

and so By, ...,B, are algebraically independent.

Therefore, Schnauel’s Conjcture implies Weak Schnauel’s Conjecture. We formu-
late Gelfond’s second extension as a conjecture and quote it verbatim, including
his partial italicization and his omission of the hypothesis that the oy are irrational.

Conjecture 2.6 (Gelfond’s Power Tower Conjecture). Let ® # 0 and o be alge-
braic numbers, with o, irrational. Then when 7 := ¢® and when 7z := o, the power
tower of z of order k > 2

kZ: ZzZ
——
k—times
is transcendental. In fact, when z:= ® the number 'z(=z), *z(= 7%), 3z(=2%), ...

are algebraically independent, as one *z, 3z, *z, ... when z7:= 0.

Theorem 2.7. Assume the Weak Schanuel Conjecture. The Gelfond’s Power Tower
Conjecture is also true. Moreover, under the weaker hypothesis that o is an alge-
braic number but not a rational integer, the power tower ™. of order m > 3 is

transcendental and the numbers logo., 3o, o, S, ... are algebraically indepen-
dent.
Remark. For example, take ® = 1 and a = % Then if WSC holds, the numbers

e, e, e, ...

are algebraically independent, and so are numbers
L v
Nz 1\ (O
log2, | = | = = s
2 2 2

Proof. Proof for z:=e®. As0# m € Q the Hermite-Lindemann theorem implies that
17 = 7=¢% is transcendental, and so the statement is true for k = 1. Now, fix k>0 and
suppose inductively that the numbers 'z, ?z,..., ¥z are algebraically independent
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withz=¢®. Then®, 'z, ®-2z,..., ®-*zare Q-linearly independent.
As Itz =077 WSC applied to the subset
{117 2z, k”z}C{w, o'z 0%..., 0%
e‘”‘zz,..., ew'kz}
yields the algebraic independence of the numbers 'z,%z, ..., ¥*!z. This completes

the induction and proves the theorem for z:= ®.

Proof for z:= o.. Assuming WSC is true, we show that if o € Q\Z and m > 3,
then the numbers logar, o, *ar, ..., a are algebraically independent; the proof in
two cases.

Case 1. oo € Q\Z. Then a* is irrational. Thus 1 and o are Q-linearly indepen-
dent, and then so one loga and ae®*logo.. Since o and o are algebraic, WSC
applied to the subset

{logoc, ocO‘a} c {logoc, o*logor, o, oco‘a}

3

yields the algebraic independence of logow and o®* = 3at.

m

Now, fix m >3 and assume inductively that logo, o, *ar, ... ,” Lo are algebraically

independent. Then in any Q-linear relation
m—1 )
Y aj/o=0 we musthave a3 =+ =a,_; =0
j=1

Since 'a = a0 € Q\Z and %t = ® ¢ Q, we have a; = a, = 0. That implies the Q-linear
independence of

{1“l°g°"~~~7m710‘10ga} = {log(zoc)7..., log(moc)}

Then WSC yields the algebraic independence of the subset
{log(za), ‘a, 40c,...,’”oc} c {log(z(x),..., log("a.),

2a,..., ’”oc}

and hence, since log (2OL) =aloga., also that of the set {log(x, 3a, Yo, mOL}.
This completes the induction.

Case 2. o € @\Q By the Gelfond-Schneider Theorem, o® is transcendental.
Hence 1, o, o0 are Q-linearly independent, and then so are logat, o logor, ot* logat.
Since
{Oclog(x, ocalog(x} c @(loga, o, (xa)
and o is algebraic, WSC applied to the subset
{log(x,oca,oc““} c {logoc,(xlogoc,a“logoc,oc,(xo‘,oc“a}

yields the algebraic independence of

{logoc, o, oc“a} = {log(x,zoc,3oc}
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m

Suppose inductively that loga., 2o, 3o, ..., "o are algebraically independent,

where m > 3. Then any Q-linear relation

m—1
ap+ Z ai/ou=0 implies ap=--=ay-1=0.
J=1

Since 'a = a ¢ Q, we also get ag = a; = 0. That implies the Q-linear independence
of

{logoc, laloga, ..., m_l(xlogoc} :{log(x, log(zoc),..., log(’”oc)}
Since
{l(xlog(x,..., ’”‘loclogoc}c@(logoc, 'a, 2a,...,"a),
we may apply Weak Schanuel Conjecture

{loga,’a’a,...,"a} {log(loc),...,log('”oc),loc7...,moc}

and conclude that log(x,z(x,3(x, ..., Mo are algebraically independent. Thus, in
both Cases 1 and 2, the numbers logat, 2o, %, ..., "o are algebraically indepen-
dent. O

Results on the arithmetic nature of power towers of x of infinite order

Cx:i= klim k= (e®<x< eé).
Theorem 2.8. If the Weak Schanuel Conjecture is true, then for any non-constant
polynomials P(x),Q(x) € Q[x], the numbers P(e)2(®), P(n)2™) are transcenden-
tal.

e Our proof can adapted to show that WSC also implies that the transcen-
dence of P(log2)2(loe2),

e On the other hand, there do exist transcendental numbers 7 for which T7
is algebraic.

e In the view of the Gelfond-Schneider, it is natural to ask

e Which transcendental numbers are not algebraic powers of algebraic num-
bers? 1

e For instance, e = aP for any o, B € Q, since otherwise e¥ = o € Q would
contradict the Hermite-Lindemann Theorem

Proof. Fix non-constant polynomials P(x),Q(x) € Q[x].
Proof that P(¢)2(¢) is transcendental. Firstly, let us consider the cases P(x) = x",

where n > 1. Since Q(e) is transcendental, 1 and nQ(e) are Q-linearly independent.
Applying WSC to the subset

{e7enQ(e)} c {LnQ(g)?e,ehQ(e)}

it follows that "2(¢) = P(£)2(¢) is transcendental, as claimed.

Now, assume P(x) # x" for any n > 1. We show that 1 and logP(e) are Q-linearly
independent. Given a Q-linear relation a +blogP(e) = 0 by clearing the denomi-
nators if necessary, we may assume that a,b € Z with b > 0. Now P(e)’e”—1=0.
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If a > 0, then, since P(x) #x" for any n > 0 and e is not algebraic the polynomial
P(x)bx* — 1 must be identically zero; hence =a =b = 0.

If a <0, then P(x)? —x™ = x™*(P(x)’x* - 1) must be the zero polynomial, and
againa=b=0.

Now, WSC applied to the subset

{e,logP(e)} c {l,logP(e),e,P(e)}
implies that e and log P(e) are algebraically independent. Hence so are P(e) and

O(e).

Proof that P(n)2(™®) is transcendental. Note that 7/ and logP(r) are Q-linearly
independent, for if there exists a Z-relation aint + blogP(n) = 0 with b > 0, then
P(m)? = (1) would be algebraic, contradicting the transcendence of . Apply-
ing Weak Schanuel’s Conjecture to the subset

{in, logP(n)} c {ir, logP(n), ¢™, P(n)}

we get that im and log P(w) are algebraically independent.
Then the set

{in, logP(n), O(x), logP(m)}
is Q-linearly independent, and WSC applied to this subset of
{im, logP(n), Q(n)logP(x), €, P(r), P(x)?™}
yields the desired result. O

Theorem 2.9. Assume that the Schanuel Subset Conjecture is true. Let o and 3
be any algebraic numbers, and let P(x) € Q[x] be non-constant polynomials. Then

(aP - P(e)) (P - P(m))(af - P(10g2) ) #0.

Proof. 1t suffices to show that if Weak Schanuel’s Conjecture is true and ® # 0 is
algebraic, then the numbers P(e)®, P(w)®, and P(log2)® are all transcendental.

Lemma 2.10. If Q(x) € Q[x]\{0,x" : n=0,1,2,...}, then logQ(e) is transcen-
dental.

Proof. Suppose on the contrary that o :=logQ(e) € Q.
n
If O(x) = > " then we have the relation
k=0

apg+aje+-+ape" —e* =0.

The Lindemann-Weierstras Theorem implies first that o € {0,1,...,n} and then
that aq = 1 and @y = 0 for k # o.. But then Q(x) =x™ contradicting the hypothesis.
Therefore logQ(e) ¢ Q. d

Proof that P(e)® ¢Q. Since ¢"® is transcendental forn=1,2, ..., we may assume
P(x) #x". Then Lemma 1 implies log P(¢) is transcendental, which in turn implies
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the Q-linear independence of 1, logP(e), ®logP(e). Now, by WSC applied to the
subset

{e,logP(e),P(e)‘”} c {l,logP(e),mlogP(e),e,P(e),P(e)“’}

we get, in particular, the transcendence of P(e)®.

Proof that P(1t)® ¢ Q. In the second part of the proof of Theorem 2, we proved that
it and log P(1) are algebraically independent. Since o is irrational, the set

{in,logP(n),o)logP(Tt)}
is Q-linearly independent. Now, we can apply WSC to the subset
{r, logP(x), P(n)®} c {in, logP(n), ®logP(x),
¢™ P(r), P(n)®}

and conclude that P(1t)® is transcendental.

Proof that P(log2)® ¢ Q. The numbers log2 and log P(log2) are Q-linearly inde-
pendent. In fact, any Q-relation alog2 + blog P(log2) = 0 implies that P(log2)” =
27% and then a = b = 0 by the transcendence of P(log2). By WSC applied to the
subset

{log2, logP(log2)} c {log2, logP(log2), 2, P(log2)},
we have that log2, log P(log2) are actually algebraically independent, and so the
set

{log2,logP(log2),mwlogP(log2)}

is Q-linearly independent.
Applying by Weak Schanuel’s Conjecture, applied to the subset

{1og2, logP(log2), P(log2)®}
c {log2,logP(log2),0P(log2),2,P(log2),P(log2)®}

we see that log2, logP(log2), P(log2)® are algebraically independent. The theo-
rem follows.
O
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